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Abstract

We propose new bounds and approximations for the transition probabilities of a continuous-time Markov process with
finite but large state-space. The bounding and approximating procedures have been exposed in another paper [S. Mercier,
Numerical bounds for semi-Markovian quantities and applications to reliability, in revision for Methodology and Com-
puting in Applied Probability] in the more general context of a continuous-time semi-Markov process with countable state-
space. Such procedures are here specialized to the Markovian finite case, leading to much simpler algorithms. The aim of
this paper is to test such algorithms versus other algorithms from the literature near from ours, such as forward Euler
approximation, external uniformization and a finite volume method from [C. Cocozza-Thivent, R. Eymard, Approxima-
tion of the marginal distributions of a semi-Markov process using a finite volume scheme, ESAIM: M2AN 38(5) (2004)
853–875].
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Continuous-time jump Markov processes with finite state-space are very common for modelling the time
evolution of industrial systems. However, due to a rapid explosion of the size of the state-space with the num-
ber of components of the system, the numerical evaluation of different reliability indicators might become a
challenging problem. Such considerations have lead to an extensive literature on the evaluation of such indi-
cators and especially of the transition probabilities from which may be derived lots of other time-dependent
quantities: to have an idea of the existing literature, one may look for instance at the book by Stewart [16], to
the articles by Moler and Van Loan [10,11] with 161 citations, to [13] or to [15]. The aim of this paper is not to
do any survey of the subject neither to look at all the existing methods such as uniformization, Krylov sub-
space techniques, ODE methods or any other ones or any of their derivatives. We here simply present a new
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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method which allows to bound and to approximate the goal quantities, namely the transition probabilities of a
continuous-time Markov process with a large finite state-space. This method is also compared to three other
ones from the literature, chosen for their proximity with ours.

The principle is very simple and consists in bounding the continuous inter-arrival times of a jump Markov
process by two discrete random variables with range in hN ðh > 0Þ. This bounding procedure is valid for any
general random variable and has already been used in [8] to bound different quantities from the reliability field
such as (1) cumulative probability functions of sums of i.i.d. non-negative random variables, (2) renewal func-
tions and (3) cumulative probability functions of geometric sums of i.i.d. non-negative random variables.
More generally, it has been used in [9] to bound any quantity which is solution of a Markov renewal equation
linked to some semi-Markov process with countable state-space, and in particular to bound the transition
probabilities of a semi-Markov process. The present paper may then be seen as a special case of [9]. However,
in the present case of a Markov process, the algorithm for the computations of the bounds may be highly sim-
plified leading to much quicker computations. Also, the approximations provided by the bounds for the tran-
sition probabilities may here be interpreted as first-order expansions for the semi-group of the Markov
process, just as for well-known methods such as Euler’s forward approximation (FEA) [12] or external uni-
formization (EUA) [6] or [14], or for the method provided in [4] for semi-Markov processes (CEA). Those
three methods (FEA, EUA and CEA) have then been chosen for comparison purpose with ours due to their
proximity from ours.

This paper is organized as follows: the notations and the mathematical backgrounds from [9] are given in
Section 2. Algorithms are provided in Section 3 for the numerical computations of bounds and approxima-
tions of any solution of a Markov renewal equation associated to some continuous-time Markov process. Sec-
tion 4 is specialized to the bounds and approximations of the transition probabilities and to their
interpretation in term of the continuous-time Markov process. A benchmark is provided in Section 5 which
is used in Section 6 to perform different numerical experiments: the bounds are first tested. Then, different
approximations from the paper are compared and a single one is selected to be next compared to FEA,
EUA and CEA. Conclusive remarks close the paper in Section 7.
2. Notations and mathematical backgrounds

A system is considered, which evolves in time according to a continuous time Markov process ðX tÞtP0 on a
finite state-space E ¼ f1; . . . ;mg. For i; j 2 E with i 6¼ j, let ai;j be the constant transition rate from state i to
state j and let bi ¼

P
j 6¼iai;j. Also, let A be the generator matrix of ðX tÞtP0 with:
Aði; jÞ ¼
ai;j if i 6¼ j;

�bi if i ¼ j

�

and let P be the transition matrix with:
P i;j ¼
ai;j

bi
if bi 6¼ 0;

0 if bi ¼ 0

�

for i 6¼ j and P i;i ¼ 0.
We also set T 0 ¼ 0 < T 1 < � � � < T n < � � � as the jump-times for ðX tÞtP0 with supn2NT n ¼ þ1 a.s. for all

i 2 E and ðP tÞtP0 the transition semi-group of ðX tÞtP0 :
P tði; jÞ ¼ PiðX t ¼ jÞ
for all i; j 2 E, all t P 0 where Pi is the conditional distribution given that X 0 ¼ i.
Now, let Bþ be the set of all functions f : E � Rþ ! Rþ such that the function t 7! f ði; tÞ is bounded on all

½0; t� for all i 2 E.
Letting qði; j; duÞ ¼ ai;je

�biudu (all i; j 2 EÞ, we recall that for any fixed g 2 Bþ, the Markov renewal equa-
tion f ¼ g þ q � f , namely,
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f ði; tÞ ¼ gði; tÞ þ
X
j2E

Z t

0

ai;je
�biuf ðj; t � uÞdu ðall i 2 E; all t P 0Þ
has got one single solution in Bþ (see [2] or [3], e.g.), which we denote by fg.
In [9], it has been proved that such a single solution fg may be approximated by some functions f h

g and f hþ
g .

Such functions are the single solutions of discrete Markov renewal equations: f h
g ¼ g þ qh � f h

g and f hþ
g ¼

g þ qhþ � f hþ
g where the associated discrete semi-Markov kernels ðqhði; j; dtÞÞi;j2E and ðqhþði; j; dtÞÞi;j2E have a

support included in hN and where qh � f stands for
ðqh � f Þði;NhÞ ¼
X
j2E

XN

k¼0

qhði; j; khÞf ðj; ðN � kÞhÞ; ð1Þ
for all f 2 Bþ, the same for qhþ � f .
The approximating discrete time semi-Markov processes associated to ðqhði; j; dtÞÞi;j2E and ðqhþði; j; dtÞÞi;j2E

are constructed such that they visit the same states as the initial continuous-time Markov process (CTMP) and
such that their respective inter-arrival times are the classical lower and upper geometric approximations for
the exponential inter-arrival times of the CTMP. The discrete semi-Markov kernels then have the following
mass at kh:
qhði; j; khÞ ¼ Pi kh < T 1 6 ðk þ 1Þh;X T 1
¼ jð Þ ¼ P i;je

�bikhð1� e�bihÞ ð2Þ
qhþði; j; khÞ ¼ 1fkP1gqhði; j; ðk � 1ÞhÞ ¼ 1fkP1gP i;je

�ðk�1Þbihð1� e�bihÞ ð3Þ
for all k 2 N where 1f:g is the indicator function.
The upper semi-Markov approximation may also be considered as a Markov chain with time scale hN� and

transition probabilities:
pi;j ¼
qhþði; j; hÞ ¼ P i;jð1� e�bihÞ for i 6¼ j;

1�
P
j 6¼i

qhþði; j; hÞ ¼ e�bih for i ¼ j:

8<
:

This is not the case for the lower semi-Markov approximation which may instantaneously jump with non-zero
probability (due to qhði; j; 0Þ ¼ P i;jð1� e�bihÞÞ.

Due to the construction, the approximations f h
gj

and f hþ
gj

will be referred to as LGA and UGA in the fol-
lowing, for ‘‘lower’’ and ‘‘upper geometric approximation’’, respectively.

The following results have been proved in [9] (in more general a context).

Theorem 1. Let ðX tÞtP0 be a Markov process with a finite state-space. For all g 2 Bþ:

(1) if t 7! gði; tÞ is non-decreasing for all i 2 E, then, for all 0 < h:
f hþ
g 6 fg 6 f h

g < þ1; ð4Þ
(2) if g is of the shape g ¼ g1 � g2 with g1; g2 2 Bþ and t 7! gjði; tÞ is non-decreasing for j ¼ 1; 2 and all i 2 E,

then, for all 0 < h:
f hþ
g1
� f h

g2
6 fg ¼ fg1

� fg2
6 f h

g1
� f hþ

g2
< þ1; ð5Þ
(3) if u 7! gði; uÞ is uniformly continuous on ½0; t� for all i 2 E where t P 0, then
lim
h!0þ

f h
g ði; tÞ ¼ lim

h!0þ
f hþ

g ði; tÞ ¼ fgði; tÞ: ð6Þ
In some special cases, we can also use the following proposition proved in [9] (in more general a context):

Proposition 2. Let ðX tÞtP0 be a Markov process on E ¼ f1; . . . ;mg and v : E! Rþ. Let w : E � Rþ ! Rþ be

such that wði; tÞ ¼ vðiÞPiðT 1 > tÞ ¼ vðiÞe�bit. If the generator matrix A of ðX tÞtP0 is upper triangular and if v is

non-decreasing, we have, for all h > 0, t P 0, i 2 E:
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f hþ
whþði; tÞ 6 EiðvðX tÞÞ 6 f h

whði; tÞ ð7Þ
with
whði; tÞ ¼ vðiÞ exp �bi h
t
h

j k
þ h

� �� �
whþði; tÞ ¼ vðiÞ exp �bih

t
h

j k� �
;

where b� � �c stands for the floor function. (For x 2 R and n 2 Z : bxc ¼ n if and only if n 6 x < nþ 1Þ. If A is

lower triangular, inequalities are reversed; the same if v is non-increasing.

Inequalities (4), (5) and (7) provide bounds for the goal quantity fg which converge to fg due to (6). The
interest of such results is that the bounds are easily computable. The following section is devoted to their
numerical computation in the present case of a Markov process.

3. Numerical computation of fg and f hþ
g

Using (1), the equation f h
g ¼ g þ qh � f h

g (e.g.) may be written at t ¼ Nh as
f h
g ði;NhÞ ¼ gði;NhÞ þ

X
j2E

XN

k¼0

qhði; j; khÞf h
g ðj; ðN � kÞhÞ ð8Þ
(similar result for f hþ
g Þ so that f h

g ð�;NhÞ may easily be expressed with respect of f h
g ð�; 0� hÞ,

f h
g ð�; 1� hÞ; . . . ; f h

g ð�; ðN � 1ÞhÞ, where f hð�; khÞ stands for ðf hði; khÞÞi2E (all 0 6 k 6 NÞ, see [9]. However, in
the present case where ðX tÞtP0 is a Markov process, we may express f h

g ð�;NhÞ only with respect of
f h

g ð�; ðN � 1ÞhÞ and of the initial data (the same for f hþ
g Þ, leading to much quicker a computation. We get

the following result:

Proposition 3. Let g 2 Bþ and h > 0. For all N 2 N, we set: f hð�;NhÞ ¼ ðf hði;NhÞÞi2E columnwise, the same for

gð�;NhÞ and f hþð�;NhÞ. Let I be the identity matrix with size cardinalðEÞ and
Dh ¼ diagðe�bih; i ¼ 1 . . . mÞ
Ch ¼ Dh þ ðI � DhÞP
Bh ¼ I � ðCh � DhÞ ¼ I � ðI � DhÞP ;
where diagðu1; . . . ; umÞ stands for the diagonal matrix with u1; . . . ; um as diagonal terms (all u1; . . . ; um 2 RÞ. The

matrix Bh then is non-singular and
f h
g ð�; 0Þ ¼ B�1

h gð�; 0Þ; ð9Þ
f hþ

g ð�; 0Þ ¼ gð�; 0Þ; ð10Þ
f h

g ð�; ðN þ 1ÞhÞ ¼ B�1
h ½gð�; ðN þ 1ÞhÞ þ Dhðf h

g ð�;NhÞ � gð�;NhÞÞ�; ð11Þ
f hþ

g ð�; ðN þ 1ÞhÞ ¼ Chf hþ
g ð�;NhÞ � Dhgð�;NhÞ þ gð�; ðN þ 1ÞhÞ; ð12Þ
for all N 2 N.

Proof. Using (2) and (3), we may write
qhð�; �; khÞ ¼ Dk
hðI � DhÞP ¼ Dk

hðCh � DhÞ;
qhþð�; �; khÞ ¼ 1fkP1gDk�1

h ðCh � DhÞ;
where qhð�; �; khÞ ¼ ðqhði; j; khÞÞi;j2E, the same for qhþð�; �; khÞ.
Eq. (8) may now be written as
f h
g ð�;NhÞ ¼ gð�;NhÞ þ

XN

k¼0

DN�k
h ðCh � DhÞf h

g ð�; khÞ;
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for all N 2 N. Whence,
ðI � ðCh � DhÞÞf h
g ð�;NhÞ ¼ Bhf h

g ð�;NhÞ ¼ gð�;NhÞ þ 1fNP1g
XN�1

k¼0

DN�k
h ðCh � DhÞf h

g ð�; khÞ:
Now, let k be an eigenvalue of Ch � Dh ¼ ðI � DhÞP . Using
P

j2EP k;j ¼ 1 for all k 2 E, we have
jkj 6 kðI � DhÞPk1 ¼ max
i2E

X
j2E

½ðI � DhÞP �ði; jÞ
 !

¼ max
i2E
ðð1� DhÞði; iÞÞ ¼ max

i2E
ð1� e�hbiÞ < 1 ð13Þ
and 1 is not an eigenvalue of ðI � DhÞP . Then, Bh ¼ I � ðCh � DhÞ is non-singular. We derive
f h
g ð�;NhÞ ¼ B�1

h gð�;NhÞ þ 1fNP1g
XN�1

k¼0

DN�k
h ðI � BhÞf h

g ð�; khÞ
" #

ð14Þ
and consequently, f h
g ð�; 0Þ ¼ B�1

h gð�; 0Þ.
For any N 2 N, we also have from (14) at N þ 1:
f h
g ð�; ðN þ 1ÞhÞ ¼ B�1

h ½gð�; ðN þ 1ÞhÞ þ
XN

k¼0

DNþ1�k
h ðI � BhÞf h

g ð�; khÞ�

¼ B�1
h

gð�; ðN þ 1ÞhÞ þ DhðI � BhÞf h
g ð�;NhÞ

þ1fNP1g
PN�1

k¼0

DNþ1�k
h ðI � BhÞf h

g ð�; khÞ

2
64

3
75

¼ B�1
h

gð�; ðN þ 1ÞhÞ

þDhðf h
g ð�;NhÞ � ðBhf h

g ð�;NhÞ � 1fNP1g
PN�1

k¼0

DN�k
h ðI � BhÞf h

g ð�; khÞÞÞ

2
64

3
75

¼ B�1
h ½gð�; ðN þ 1ÞhÞ þ Dhðf h

g ð�;NhÞ � gð�;NhÞÞ�
from (14) at N, whence the result for f h
g . The proof is similar for f hþ

g and is omitted. h

We easily derive the following result:

Corollary 4. With the assumptions and notations of Proposition 3, in case gð�; ðN þ 1ÞhÞ ¼ Dh � gð�;NhÞ for all

N 2 N, we then have
f h
g ð�; ðN þ 1ÞhÞ ¼ B�1

h Dhf h
g ð�;NhÞ; ð15Þ

f hþ
g ð�; ðN þ 1ÞhÞ ¼ Chf hþ

g ð�;NhÞ ð16Þ
and consequently
f hþ
g ð�;NhÞ ¼ CN

h � gð�; 0Þ; ð17Þ
f h

g ð�;NhÞ ¼ ðB�1
h DhÞN B�1

h � gð�; 0Þ; ð18Þ
for all N 2 N.

Remark 5. The previous corollary is used in Section 4.2 for the interpretation of the approximation of the
transition probabilities in term of the underlying continuous-time Markov process.

We can see from Proposition 3 and Corollary 4 that quantities of the shape B�1
h v have to be computed for

the numerical evaluation of f h
g ð�;NhÞ, with v a column array. This is equivalent to the resolution of linear sys-

tems of the shape Bhw ¼ v. The conditioning of such systems is studied in the following lemma:

Lemma 6. For h > 0, the condition number of Bh is given by
condðBhÞ ¼ ehðmaxi2Ebi�mini2EbiÞ;
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where condðBhÞ ¼ kBhk1:kB�1
h k1 with Bh defined in Proposition 3 and
kBhk1 ¼ max
i2E

X
j2E

Bhði; jÞ
 !

:

Proof. Using similar arguments as in (13), we have
kBhk1 ¼ max
i2E

X
j2E

½I � ðI � DhÞP �ði; jÞ
 !

¼ max
i2E
ðDhði; iÞÞ ¼ e�hmini2Ebi :
Beside
kB�1
h k1 ¼ kðI � ðI � DhÞP Þ�1k1 ¼ k

Xþ1
k¼0

ððI � DhÞPÞkk1 6
Xþ1
k¼0

kððI � DhÞP Þkk
1;¼

Xþ1
k¼0

max
i2E
ð1� e�hbiÞ

� �k

¼ 1

e
�h max

i2E
bi
¼ ehmaxi2Ebi ;
hence the result. h

In case of h small in front of ðmaxi2Ebi �mini2EbiÞ, the previous lemma shows that the condition number of
Bh is near from 1 and systems like Bhw ¼ v are consequently well conditioned (see [1], e.g.).

We now provide an algorithm for the computation of f h
g and f hþ

g . Due to the specialization of the present
paper to the computation of the transition probabilities, such an algorithm is here written in the special case
where gð�; ðk þ 1ÞhÞ � Dhgð�; khÞ is independent of k, which is true for the quantities of interest (see Section 4).
Note that this property is actually true for lots of other quantities such as mean cumulated sojourn times on
½0; t�, mean number of jumps from one state to another state on ½0; t�; . . . see [7] for details.

To write our algorithm, we use the initialization (9–10), the recursive formulas (11–12), and the assumption
gð�; ðk þ 1ÞhÞ � Dhgð�; khÞ independent on k. Also, to accelerate the computation and save memory, we use the
following two ‘‘tricks’’:

• All values for f h
g ð�; khÞ and f hþ

g ð�; khÞ with 0 6 k 6 N are generally not required. It is then unnecessary to
remember all f h

g ð�; khÞ and f hþ
g ð�; khÞ, which is memory and time consuming. We here consider the case

where only one out of n0 values are required and we only retain the values fgð�; n0hÞ,
fgð�; 2n0hÞ; . . . ; fgð�;N 0n0hÞ ¼ fgð�;NhÞ with N ¼ N 0n0 (eventually N 0 ¼ 1 and n0 ¼ N in case only
f h

g ð�;NhÞ and f hþ
g ð�;NhÞ are required).

• Also, to accelerate the numerical solving of the successive systems of the shape Bhw ¼ v (one at each step),
we factorize Bh once for all at the beginning of the algorithm in the shape Bh ¼ LU with L lower triangular
and U upper triangular (eventually up to a permutation, see [1], e.g. or the documentation of Matlab).
Computing B�1

h v at each step then resumes to the successive solving of v ¼ Lz and z ¼ Uw, which is written
B�1

h v ¼ U n ðL n vÞ below, using the notations from Matlab.

We get the following algorithm:

Algorithm 1

• Input data: h, N0, n0, A, P, gð�; 0Þ, gð�; hÞ

b �DiagðAÞðmain diagonal of � A written columnwiseÞ;
Dh  diagðe�hbi ; i ¼ 1; . . . ;mÞ;
E ðI � DhÞP ;
Ch  Dh þ E;

Bh  I � E;

L; U½ �  LU factorization of Bh ðonce for allÞ:
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• Initialization:
f ð�; 0Þ  U n ðL n gð�; 0ÞÞ;
f þð�; 0Þ  gð�; 0Þ;
X  gð�; hÞ � Dhgð�; 0Þ:
• For k ¼ 0 to N 0 � 1 do
Y  f ð�; kÞ
Z  f þð�; kÞ
For l ¼ 1to n0 do

Y  U n ðL n ½DhY þ X �Þ
Z  ChZ þ X

�
f ð�; k þ 1Þ  Y

f þð�; k þ 1Þ  Z

8>>>>>>>>>><
>>>>>>>>>>:
• Output : f ði; khÞ and f þði; khÞ, namely, f h
g ði; kn0hÞ and f hþ

g ði; kn0hÞ for all i 2 E, all 0 6 k 6 N 0 ðN ¼ N 0n0Þ.

Note that this algorithm is free from matrix products and requires only products of the type matrix by a
column vector. This is very important in case of E with large size which often arises in reliability (see [12], e.g.).

Also, in case gð�; ðN þ 1ÞhÞ ¼ Dh � gð�;NhÞ for all N 2 N (examples are provided in Section 4.2), the algo-
rithm may be simplified using (15 and 16) instead of (11 and 12), namely taking X ¼ 0 in its formulation.

Finally, in case gð�; ðk þ 1ÞhÞ � Dhgð�; khÞ is not independent on k, a more general algorithm might easily be
written starting from (11 and 12). Such an algorithm might be used to bound most time-dependent quantities
for large Markov systems, which generally are solutions of Markov renewal equations (see [7] or [9] for
details). Such algorithms in the Markovian case are much simpler and much more performant than the more
general one which is presented in [9] for semi-Markovian systems.

4. Bounds and approximations for Ptði; jÞ

We here indicate how to apply the previous results to get bounds and approximations for the transition
probabilities P tði; jÞ ¼ PiðX t ¼ jÞ. We also briefly describe other known approximations near from ours for
comparison purpose.

4.1. Bounds

For j 2 E, let fj : E � Rþ ! Rþ be such that fjði; tÞ ¼ P tði; jÞ for all i 2 E, all t P 0. Using classical renewal
arguments (see [2] or [3], e.g.), it is known that
fjði; tÞ ¼ 1fi¼jgPiðT 1 > tÞ þ
X
k2E

PiðX T 1
¼ k;X t ¼ j; T 1 6 tÞ ¼ 1fi¼jge

�bit þ
X
k2E

Z t

0

ai;ke�biuPkðX t�u ¼ jÞdu

¼ gjði; tÞ þ
X
k2E

Z t

0

fjðk; t � uÞqði; k; duÞ;
where gjði; tÞ ¼ 1fi¼jgPiðT 1 > tÞ ¼ 1fi¼jg e�bit for all i 2 E, all t P 0.
Then fj is solution of the Markov renewal equation fj ¼ gj þ q � fj, namely fj ¼ fgj

in our notations.
However, the function t 7! gjði; tÞ is here non-increasing so that we cannot use the bounds given by the first

point of Theorem 1 and we have to use the second point, which is more complicated. With that aim, we note
that gj may be written as gj ¼ Ij � uj with I jði; tÞ ¼ 1fi¼jg ¼ Iði; jÞ and ujði; tÞ ¼ 1fi¼jgð1� e�bitÞ, both being
bounded and non-decreasing with respect of t. We then get from Theorem 1 (point 2):



S. Mercier / European Journal of Operational Research 185 (2008) 216–234 223
f hþ
Ij
� f h

uj
6 fgj

¼ fIj � fuj 6 f h
Ij
� f hþ

uj
ð19Þ
with
Ijði;NhÞ ¼ Iði; jÞ
ujði;NhÞ ¼ ðI � DN

h Þði; jÞ:
The function fIj that appears in (19) may be simply interpreted: indeed, fIj is the single solution of the Markov
renewal equation
fIjði; tÞ ¼ 1fi¼jg þ
X
k2E

Z t

0

qði; k; duÞfIjðk; t � uÞdu
and it corresponds to the Markov renewal function (see [2] or [3]). In other words, fIjði; tÞ represents the mean
number of visits to state j on ½0; t� for the process starting from state i.

Noting that Ijð�; ðk þ 1ÞhÞ � DhIjð�; khÞ ¼ ðI � DhÞð�; jÞ and ujð�; ðk þ 1ÞhÞ � Dhujð�; khÞ ¼ ðI � DhÞð�; jÞ are
independent on k, we use Algorithm 1 for the computation of f hþ

Ij
, f h

uj
, f h

Ij
and f hþ

uj
, which provides bounds

for P tði; jÞ ¼ fjði; tÞ using (19).
In the special case where E ¼ f1; . . . ;mg and A is triangular, and in case we are interested in the evaluation

of quantities of the shape PiðX t P jÞ, we may also use alternative bounds from Proposition 2: setting
vjðiÞ ¼ 1fiPjg ¼

Pm
n¼jIði; nÞ and wjði; tÞ ¼ vjðiÞe�bit, we get
f hþ
whþ

j
ði; tÞ 6 Eið1fX tPjgÞ ¼ PiðX t P jÞ 6 f h

wh
j
ði; tÞ ð20Þ
with
wh
j ð�; khÞ ¼ wjð�; ðk þ 1ÞhÞ ¼

Xm

n¼j

Dkþ1
h ð�; nÞ

whþ
j ð�; khÞ ¼ wjð�; khÞ ¼

Xm

n¼j

Dk
hð�; nÞ:
As wjð�; ðk þ 1ÞhÞ � Dhwjð�; khÞ is independent on k, we use again Algorithm 1 to compute the bounds provided
by (20). Such bounds are designed by ‘‘Bounds T’’ (‘‘T’’ for triangular case) in the following whereas the gen-
eral ones are called ‘‘Bounds’’.

Such ‘‘bounds T’’ may be of interest for instance in the case where the states are ranked according to their
degradation degree and where the system may only degrade with time, this last assumption corresponding to A

upper triangular. In that case, it may indeed be of interest to evaluate the probability that the system is not
‘‘too’’ degraded at time t, which corresponds to quantities of the shape PiðX t < jÞ, or alternatively PiðX t P jÞ.
To evaluate such a probability, the bounds provided by (20) are much more simple and performant than those
provided by the summation of (19) using

Pm
n¼jPiðX t ¼ nÞ ¼ PiðX t P jÞ, as will be numerically observed in

Section 6.1 (and as expected).

4.2. Approximations

We now come to different approximations for P tði; jÞ ¼ fgj
ði; tÞ provided by the present method.

A first approximation consists in taking the middle of the bounds provided by (19), namely,
ðf h

Ij
� f hþ

uj
þ f hþ

Ij
� f h

uj
Þ=2.

Also, taking gjði; tÞ ¼ 1fi¼jge
�bit as in the previous subsection, we know from Theorem 1 that
lim
h!þ1

f h
gj
ði; tÞ ¼ lim

h!þ1
f hþ

gj
ði; tÞ ¼ fgj

ði; tÞ ¼ P tði; jÞ:
For small h, both f h
gj
ði; tÞ and f hþ

gj
ði; tÞ then constitutes other approximations for P tði; jÞ, which are referred

to as LGA and UGA for ‘‘lower’’ and ‘‘upper geometric approximation’’ (see Section 2). Noting that
gjð�; ðk þ 1ÞhÞ ¼ Dh � gjð�; khÞ, we may use Algorithm 1 for their computation (with some simplification how-
ever because we here have X ¼ 0 in Algorithm 1).
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Also, we have from (17,18):
f h
gj
ð�;NhÞ ¼ðB�1

h DhÞN B�1
h gjð�; 0Þ ¼ ðB�1

h DhÞN B�1
h ð�; jÞ;

f hþ
gj
ð�;NhÞ ¼CN

h gjð�; 0Þ ¼ CN
h ð�; jÞ: ð21Þ
Such approximations actually are very near from the well-known Euler’s forward approximation (FEA). In-
deed, taking t ¼ Nh and remembering that
P t ¼ eNhA ¼ ðehAÞN ;

FEA consists in approximating ehA by its first-order term from the following approximation:
ehAði; jÞ ¼
1� bihþ oðhÞ if i ¼ j;

hai;j þ oðhÞ if i 6¼ j

�
¼ ðI þ hAÞði; jÞ þ oðhÞ ð22Þ
when h goes to 0þ (see [12], e.g.).
Actually, in term of the Markov process ðX tÞtP0, it is known that when h goes to 0þ:
ehAði; iÞ ¼ P hði; iÞ ¼ PiðX h ¼ iÞ ¼ PiðT 1 > hÞ þ oðhÞ ¼ e�bih þ oðhÞ ð23Þ

and, for i 6¼ j:
ehAði; jÞ ¼ PiðT 1 6 h; X h ¼ jÞ ¼ PiðT 1 6 h; X T 1
¼ jÞ þ oðhÞ ¼ PiðT 1 6 hÞP i;j þ oðhÞ

¼ ð1� e�bihÞP i;j þ oðhÞ ¼ ai;j
1� e�bih

bi
þ oðhÞ if bi 6¼ 0 ð24Þ
(see [3], e.g.).
Remembering that Ch ¼ Dh þ ðI � DhÞP and consequently
Chði; jÞ ¼ 1fi¼jge
�hbi þ ð1� e�hbiÞP i;j
for all i; j 2 E, Eqs. (23) and (24) may be written as ehA ¼ Ch þ oðhÞ. Due to (21), UGA ðf hþ
gj
Þ simply consists in

taking the first-order term in such an expansion of ehA and in writing P t ¼ ðehAÞN for t ¼ Nh as for FEA. Due to
I þ hA ¼ Ch þ oðhÞ, UGA then appears as very near from FEA. However, FEA requires h 6 1

maxðbiÞ to con-
verge (or I þ hA would not be non-negative) while there is no requirement by our method. Beside, 1� bih
is the first-order approximation for e�bih and, due to the previous interpretation, one might expect UGA to
be better than FEA.

As far as LGA is concerned, one might easily check that B�1
h Dh ¼ ehA þ oðhÞ when h goes to 0þ as for UGA.

However, it seems that there is no direct interpretation in term of ðX tÞtP0 for B�1
h Dh as there is for Ch.

Two other methods very near from FEA and ours may also be found in the literature:

• the ‘‘external uniformization’’ (see [6,14]) where:
ehA � ðI � hAÞ�1

when h goes to 0þ, with h < 1
qðAÞ 6

1
2 min bi

and qðAÞ the spectral radius for (A),
• the algorithm provided for semi-Markov processes by Cocozza-Eymard in [4,5], which leads to the follow-

ing approximation in the Markovian case:
ehAði; jÞ �
1

1þbih
if i ¼ j;

ai;jh
1þbih

if i 6¼ j

(

when h goes to 0þ (with no requirement for hÞ.

To sum up, we now have six different very near approximations, which have to be compared numerically:

• UGA, which corresponds to f hþ
gj

,

• LGA, which corresponds to f h
gj

,
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• Euler’s forward approximation: FEA,
• External uniformization: EUA. (a single LU factorization for I � hA is performed to compute quantities

like ðI � hAÞ�1
v for EUA),

• Cocozza-Eymard’s approximation: CEA,
• The middle of the bounds provided by (19): MB.

5. A benchmark

In order to perform numerical tests to compare the different methods described in the previous section, we
consider the following benchmark: a system is considered with n identical and independent components with
respective failure and repair rates k and l ðn P 2Þ. The state-space is E ¼ f0; . . . ; ng where state i corresponds
to exactly i failed components. A common cause failure may arrive according to a Poisson process with rate
a > 0 independently of the inner behavior of the system. When a common cause arrives, each up component is
instantaneously affected with probability p 2 ½0; 1� independently of the other components. Similarly, the sys-
tem is instantaneously controlled at times which are distributed according to a Poisson process with rate b > 0
independently of the inner behavior of the system. By those controls, some parameters of the system such as
voltage, pressure, temperature,. . . are re-adjusted and the down components are tried to be put again into
operation instantaneously with probability 1� c of success ðc 2 ½0; 1�Þ independently one from each other.

The generator matrix of the system submitted to common cause failures and controls is
A ¼ A1 þ A2
with
A1ði; jÞ ¼

ðn� iÞk if j ¼ iþ 1 and 0 6 i 6 n� 1

il if j ¼ i� 1 and 1 6 i 6 n

�
P
j 6¼i

A1ði; jÞ if j ¼ i and 0 6 i 6 n

8>><
>>:
(the generator of the inner system) and setting q ¼ 1� p:
A2ði; jÞ ¼

Cj�i
n�ip

j�iqn�ja if 0 6 i 6 j� 1 6 n� 1

Ci�j
i ð1� cÞi�jcjb if 0 6 j 6 i� 1 6 n� 1

�
P
j 6¼i

A2ði; jÞ if j ¼ i and 0 6 i 6 n

8>><
>>:
(the part of the generator due to common cause failures and controls). For example, taking n ¼ 5 (and m ¼ 6Þ,
we get setting m ¼ 1� c:
A ¼

� 5kþ 5paq4 10p2aq3 10p3aq2 5p4aq p5a

lþ bm � 4kþ 4paq3 6p2aq2 4p3aq p4a

bm2 2lþ 2bcm � 3kþ 3paq2 3p2aq p3a

bm3 3bcm2 3lþ 3bc2m � 2kþ 2paq p2a

bm4 4bcm3 6bc2m2 4lþ 6bc3m � kþ pa

bm5 5bcm4 10bc2m3 10bc3m2 5lþ 5bc4m �

0
BBBBBBBBB@

1
CCCCCCCCCA
;

where * are such that summations on lines are 0.
Taking p ¼ 0 and c ¼ 1 leads to the usual model for a system with n i.i.d. components and sparse tri-diag-

onal generator matrix. Taking 0 < p < 1 and 0 < c < 1 leads to an entirely full generator matrix. Taking l ¼ 0
and b ¼ 0 leads to an upper triangular generator. Also, adjusting a, b, k and l may lead to disparate (with
stiffness problems) or similar values for the bi’s. This example then allows us to perform our tests in very dif-
ferent cases.
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6. Numerical experiments

To perform our tests, we use EXPM1 in Matlab as a reference. This function is based on method 3 from
[10,11] and uses a ‘‘Padé approximation with scaling and squaring’’ (from the reference book of Matlab): to

compute eB, it first writes eB ¼ e
B

2n

� �2n

and chooses n such that A
2n

�� ��
2
< 1. A Padé approximation (of the shape

P B
2n

� 	
 ��1
Q B

2n

� 	
with P and Q polynomial) is then used to compute e

B
2n . Successive square elevation then pro-

vides the result. This method is known to provide very good results. However, it requires matrix products
so that it is not adapted for matrix with big size, which is our aim and indeed, Matlab reveals to be very slow
compared to all other methods presented here in case of large n. EXPM1 from Matlab is then convenient to
perform numerical tests for n not too big as in the following, but it is not adapted for really large n. Note that
the present method may however be employed with much bigger n and that tests have already been done. We
first test our bounds and then compare the different approximations.

6.1. Test for the bounds

We provide different examples of computation of bounds for P tði; jÞ or for P tði; j1 ! j2Þ :¼
Pj2

k¼j1
P tði; kÞ

with t 2 ½0; tmax�, which are compared to the results by Matlab. We envision different cases for the parameters:
a sparse case, some full cases with eventual stiffness problems, and finally a triangular case.

Example 7. We consider a sparse transition matrix with
n ¼ 200; a ¼ 0; b ¼ 0; k ¼ 10�6; l ¼ 10�4:
We first take
tmax ¼ 103; N ¼ 20; n0 ¼ 1:
This means that the interval of interest ½0; 103� is divided into 20 parts for the approximations ðh ¼ 103

20
¼ 50Þ

and that all values are retained ðN 0 ¼ NÞ. Bounds for P tð100; 100Þ are plotted in Fig. 1. We can see in such a
figure that the bounds are coherent with Matlab results and that they may be made very tight. We now take
tmax ¼ 105; N ¼ 105; n0 ¼ 2� 103:
This means that ½0; 105� is divided into 105 parts for the approximations ðh ¼ 105

105 ¼ 1Þ but only one out of
2� 103 are retained and plotted (namely only N 0 ¼ 105

2�103 ¼ 50 values are retained). Bounds for P tð0; 10!
200Þ are plotted in Fig. 2. We can see in such a figure that the accuracy lowers with increasing t, which is
due to the method.
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Fig. 1. Example 7, first case. (The bounds and Matlab results are nearly superimposed).
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Fig. 2. Example 7, second case.
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Example 8. We consider:
n ¼ 200; a ¼ 10�10; b ¼ 10�3; p ¼ 0:3; c ¼ 0:8; k ¼ 10�10; l ¼ 10�4
(not realistic case but full case with stiffness problem due to max bi ’ 2� 10�2 and min bi ’ 2� 10�8Þ. We
take:
tmax ¼ 104; N ¼ 104; n0 ¼ 50
and we compute P tð0; 20! 200Þ (only N 0 ¼ 200 values are retained). The results are displayed in Fig. 3. We
can see in such a figure that the method is still valid in case of stiffness problems.

Example 9. We consider
n ¼ 200; a ¼ 10�6; b ¼ 10�6; p ¼ 0:5; c ¼ 0:5; k ¼ 10�6; l ¼ 10�6
(not realistic case but full case with maxibi ’ minibiÞ. We first take:
tmax ¼ 2� 105; N ¼ 500; n0 ¼ 1
and we compute P tð150; 150Þ. We then take
tmax ¼ 3� 104; N ¼ 5; n0 ¼ 1
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Fig. 3. Example 8.
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Fig. 4. Example 9, first case.
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and we compute P tð0; 0Þ. The results are displayed in Figs. 4 and 5 and are here again coherent with the results
from Matlab. The angles in Fig. 5 are due to the fact that the interval of interest has been divided into only 5
parts so that only 5 points have been computed and plotted. This is here enough to get quite accurate values as
shows the comparison with Matlab.

Example 10. We take
n ¼ 200; a ¼ 10�7; b ¼ 0; p ¼ 0:1; k ¼ 10�6; l ¼ 0
(triangular case) and
tmax ¼ 1:5� 105; N ¼ 1500; n0 ¼ 50:
Bounds for P tð0; 10! 200Þ are plotted in Fig. 6 (30 values retained) with the general and the‘‘triangular’’
methods (see the end of Section 4.1 for details). As expected, the triangular method provides much better re-
sults when applicable.

In conclusion of this sub-section, in each case, whatever the parameters are, the bounds are always coherent
with the results by Matlab and they can be made as tight as necessary taking the step-size h small enough (or N
big enough). As expected, when applicable, the ‘‘triangular’’ method provides much better results than the
general one. Also, for a step-size fixed, the tightness of the bounds lowers with increasing t.
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Fig. 5. Example 9, second case. (Only five points plotted. The bounds and Matlab results are nearly superimposed).
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6.2. Comparison of UGA, LGA and MB

In the following examples, we compare the approximations provided by UGA, LGA and MB.

Example 11. We take
n ¼ 20; a ¼ 0; b ¼ 0; k ¼ 10�6; l ¼ 10�5
(sparse case) and
tmax ¼ 106; N ¼ 2000; n0 ¼ 1:
Approximations by UGA, LGA and MB for P tð0; 10! 20Þ are plotted in Fig. 7. We can see that UGA is the
best among the three.

Example 12. We consider
n ¼ 20; a ¼ 10�6; b ¼ 10�6; p ¼ 0:5; c ¼ 0:5; k ¼ 10�6; l ¼ 10�6
(full case). We take
tmax ¼ 106; N ¼ 666; n0 ¼ 1
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Fig. 7. Example 11.
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and approximations by UGA, LGA and MB for P tð5; 10Þ are plotted in Fig. 8. UGA is here again the best
among the three.

Lots of other numerical tests have been performed with bigger n and different values for the parameters
(and other benchmarks). The results are similar in each case: for the same value of h, LGA is the looser
approximation whereas UGA and MB give roughly similar results, even sometimes a little better for UGA.
As MB is longer to compute, UGA is the best approximation among LGA, UGA and MB. Consequently,
we only keep UGA in the following.

6.3. Comparison of UGA and CEA

Example 13. We consider
n ¼ 20; a ¼ 0; b ¼ 0; k ¼ 10�6; l ¼ 10�4
(sparse case) and we take
tmax ¼ 3� 104; N ¼ 30; n0 ¼ 1:
Approximations by UGA and CEA for P tð4; 4Þ are plotted in Fig. 9. UGA is here better than CEA.
0 2 4 6 8 10
x 105

0

0.02

0.04

0.06

0.08

0.1

0.12

t

P
t
(5

,1
0)

Matlab
UGA
LGA
MB

Fig. 8. Example 12.
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Example 14. We consider
n ¼ 20; a ¼ 10�6; b ¼ 10�6; p ¼ 0:5; c ¼ 0:5; k ¼ 10�6; l ¼ 10�6
(full case) and we take
tmax ¼ 2� 106; N ¼ 200; n0 ¼ 1:
Approximations by UGA and CEA for P tð0; 5Þ are plotted in Fig. 10. UGA is here better than CEA.

Here again, lots of other numerical tests have been performed with bigger n and different values for the
parameters (and other benchmarks). The results are similar in each case: for the same value of h, UGA is bet-
ter than CEA. Consequently, CEA is not considered any more in the following.

6.4. Comparison of UGA, EUA and FEA

No computation times have been given before because they were very small and comparable, also because
the results of comparison between the different methods were quite clear. The comparison now becomes more
difficult so that it is worth looking at them.

Example 15. We consider
n ¼ 200; a ¼ 0; b ¼ 0; k ¼ 10�6; l ¼ 10�4
(sparse case). In the first case, we take
tmax ¼ 103; N ¼ 20; n0 ¼ 1:
and we plot approximations for P tð100; 100Þ by UGA, EUA and FEA in Fig. 11. The computations take: 6
c.p.u. by Matlab, 0.01 c.p.u. by FEA and UGA, and 0.04 c.p.u. by EUA (all points for all methods). Here,
UGA is better than both EUA and FEA.

In the second case, we take
tmax ¼ 103; N ¼ 5; n0 ¼ 1
and we plot approximations for P tð0; 10! 200Þ by UGA, EUA and FEA in Fig. 12. We can see in such a
figure that FEA here requires a smaller h than EUA to converge. Also, UGA is better than EUA (and of
course FEA which does not provide correct results).

Example 16. We consider
n ¼ 200; a ¼ 10�7; b ¼ 10�6; p ¼ 0:1; c ¼ 0:8; k ¼ 10�6; l ¼ 10�5
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Fig. 10. Example 14.
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Fig. 11. Example 15, first case. (UGA and Matlab are nearly superimposed).
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Fig. 12. Example 15, second case. (UGA and Matlab results are nearly superimposed).
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(full case) and
tmax ¼ 5� 104; N ¼ 50; n0 ¼ 1:
We plot approximations for P tð0; 0! 2Þ by UGA, EUA and FEA in Fig. 13. The computations take: 8 c.p.u.
by Matlab, 0.03 c.p.u. by FEA, 0.08 c.p.u. by UGA, and 0.3 c.p.u. by EUA. Here, both EUA and FEA are
slightly better than UGA.

Example 17. We consider
n ¼ 200; a ¼ 10�6; b ¼ 10�6; p ¼ 0:5; c ¼ 0:5; k ¼ 10�6; l ¼ 10�6
(full case). In the first case, we take
tmax ¼ 2� 105; N ¼ 50; n0 ¼ 1
and we plot approximations for P tð150; 150Þ by UGA, EUA and FEA in Fig. 14. In this case, we have
h < 1

maxibi
¼ 5� 103. However FEA does not provide correct results. UGA is better than EUA for small t,

the contrary is true for large t. The computations take: 7 c.p.u. by Matlab, 0.031 c.p.u. by FEA, 0.06
c.p.u. by UGA, and 0.27 c.p.u. by EUA.

In the second case, we take
tmax ¼ 2� 104; N ¼ 20; n0 ¼ 1



0 1 2 3 4 5
x 10

4

0

0.2

0.4

0.6

0.8

1

t

P
t

(0
,0

→
2)

Matlab
EUA
FEA
UGA

Fig. 13. Example 16.

0 0.5 1 1.5 2

x 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

P
t
(1

50
,1

50
)

Matlab
EUA
FEA
UGA

Fig. 14. Example 17, first case.
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and we plot approximations for P tð0; 0Þ by UGA, EUA and FEA in Fig. 15. Here, UGA is better than both
EUA and FEA.

Lots of other tests have been performed which are not provided here. As for c.p.u. times, FEA and UGA
(with the same h) are very similar with FEA slightly quicker, EUA is a little longer (from twice up to ten times
longer in our tests), whereas Matlab is clearly much longer. As for the performance, most of the time, UGA is
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Fig. 15. Example 17, second case. (UGA and Matlab results are nearly superimposed).
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better, especially for t not too big. However, FEA and/or EUA are sometimes slightly better, in particular for
large t, when approaching the long-time run. Note that UGA has not been compared here to FEA and EUA
in the special case of an triangular generator with interest in quantities like PiðX t P jÞ, which would clearly be
to the advantage of UGA.

7. Conclusion

We have proposed, in this paper, bounds and approximations for time-dependent quantities for big Mar-
kovian systems, which are solutions of Markov renewal equations. We have focused on the transition prob-
abilities which have been the object of an extensive literature. The quality of the bounds has been tested on
different numerical examples showing the accuracy of the method. Also, the bounds and approximations have
been interpreted in term of the Markov process showing the proximity of our method with standard methods
such as Euler’s forward approximation (FEA) or external uniformization (EUA), and with the method from
[4] (CEA). Different numerical tests have then been performed for comparison purpose: first, our different
approximations have been compared one with each other and one of them has emerged, the so-called
UGA for Upper Geometrical Approximation. Then, UGA has been tested versus CEA with a clear advantage
to UGA. Finally, UGA has been tested versus FEA and EUA with general advantage to UGA but exceptions
however, especially in long time run.
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